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speaker
I will discuss about applying 
Machine Learning 
technique, in particular 
Deep Learning, to 
LArTPC data 
reconstruction

Some people like buzzwords, some people don’t. 
My topic is about applying buzzword on buzzword. 

Some of you might hate it, but hopefully some of you love it.

Outline
• Liquid Argon Time Projection Chambers 
• Recent innovations in Computer Vision 
• Deep Neural Networks for data reconstruction 
• Wrap-up



Disclaimer

• Mainly story-telling of what’s going on 
• No physics results 
• No comparison with traditional reco 
• Very few distributions, mainly figures

In this talk …

Oh dear, 
can you spot 

neutrino? 

What we are
What we wish to be



Liquid Argon Time Projection 
Chambers
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Outline 
• Liquid Argon Time Projection Chambers 
• Recent innovations in Computer Vision 
• Deep Neural Networks for data reconstruction 
• Wrap-up



Neutrino Oscillation Measurements

What detector technology? 
Three important detector features for oscillation measurement

Large Mass 
(scalable)

Good Energy 
Resolution

Particle ID 
Capability

“More” statistics to measure 
rare physics process

Better ν identification 
background rejection

Precise Eν reduce 
oscillation uncertainty 
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νµ

LArTPC: Particle Imaging Detector

Bubble Chamber

Liquid Argon Time Projection Chamber 
• Chamber-like images: digitized electronics readout 
• Calorimetric measurement + scalability to a large mass

~mm/pixel spatial resolution 
~MeV level sensitivity

MicroBooNE 
~87 ton (school bus size)



LArTPCs for Neutrino Oscillation Experiments
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~87 ton @ L = 470 m

ICARUS T600 
~476 ton @ L = 600 m

SBND 
~112 ton @ L = 110 m νµ beam 

(BNB)

SBN Program 
at Fermilab

DUNE



How MicroBooNE LArTPC Work (I)

Cathode @ 70 kV 
(plate)

Anode 
(wire plane)

Electric Field 
~270 V/cm

X = 2.5 m

Y
 = 2.3 m

Z = 10
.4 

m

1. Charged particles interact in Ar 
• Ionize argon 
• Produce scintillation light 

2. Ionization e- drift toward anode 
3. Wire planes detect drift e-
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ν



Anode 
(wire plane)

X = 2.5 m

Y
 = 2.3 m

Z = 10
.4 

m

1. Charged particles interact in Ar 
• Ionize argon 
• Produce scintillation light 

2. Ionization e- drift toward anode 
3. Wire planes detect drift e-

Scintillation Light

Electrons

Scintillation Light 
detected by PMTs

Cathode @ 70 kV 
(plate)

Electric Field 
~270 V/cm
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How MicroBooNE LArTPC Work (II)



Scintillation Light 
detected by PMTs

Anode 
(wire plane)

X = 2.5 m

Y
 = 2.3 m

Z = 10
.4 

m

1. Charged particles interact in Ar 
• Ionize argon 
• Produce scintillation light 

2. Ionization e- drift toward anode 
3. Wire planes detect drift e-

Charge collected 
by wire plane

Drift Time = X position

Cathode @ 70 kV 
(plate)

Electric Field 
~270 V/cm
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Three 
Wire Planes

How MicroBooNE LArTPC Work (III)



Scintillation Light 
detected by PMTs

Anode 
(wire plane)

X = 2.5 m

Y
 = 2.3 m

Z = 10
.4 

m

1. Charged particles interact in Ar 
• Ionize argon 
• Produce scintillation light 

2. Ionization e- drift toward anode 
3. Wire planes detect drift e-

Charge collected 
by pixel-pad plane

Drift Time = X position

Cathode @ 70 kV 
(plate)

Electric Field 
~270 V/cm
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How MicroBooNE LArTPC Work (IV)
Pixel (DUNE ND)

pixel detector

J. Assadi et al. arxiv 1801.08884

https://arxiv.org/pdf/1801.08884.pdf


LArTPC: Particle Imaging Detector

2D Projection 
(Wire Detector)

3D Imaging 
(Pixel Detector)

… putting everything together …



100 cm
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m

Cosmic Data : Run 6280  Event 6812  May 12th, 2016

Challenges in LArTPC Data Analysis?
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There may be lots of backgrounds
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100 cm

10
0

 c
m

Cosmic Data : Run 6280  Event 6812  May 12th, 2016

55 cm
Run 3469 Event 53223, October 21st, 2015 

≃ 14 cm x 14 cm

≃ 200 cm

Interaction vertex can be anywhere 
in LAr, varying in size (cm ~ meters)

Challenges in LArTPC Data Analysis?



55 cm
Run 3469 Event 53223, October 21st, 2015 

νµ

p

µ

π?

Cosmics

Cosmics

Cosmics
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Must identify event vertex 
+ neutrino interaction topology (particle types)

Challenges in LArTPC Data Analysis?
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Cluster energy depositions 
for an accurate calorimetry

Challenges in LArTPC Data Analysis?



Deal with optical illusions in 2D projections + 
3D pattern recognitions

Challenges in LArTPC Data Analysis?



Our data is an “image”, 
a matrix of numbers

Not how it looks in our code
01101010100101011010101001011010
10111010101001010100010010101101
0101001011010101001010110101010
01011010101001010110101010101101
0101001010110101010010110101010
01011010101001010110101010010110
10101001010110101010101101010100
10101101010100110101101010100101

How it actually looks in our code

we wish

in reality

Programming pattern recognition algorithms is 
non-trivial, need full-chain optimization

18

Challenges in LArTPC Data Analysis?



Solution? 
• The core: pattern recognition challenge 
•  Most of analysis/reconstruction “trivial by eyes” 
-  motivation to try neuromorphic algorithms 

• Solve the “full chain optimization” issue by design 
-  machine learning algorithms 

Recent advancement in computer vision 
• Recent breakthrough in complex pattern recognition  
-  Machine learning solution: “Deep Neural Networks”
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Challenges in LArTPC Data Analysis?
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How may I help  
LArTPCs?

Outline 
• Liquid Argon Time Projection Chambers 
• Recent innovations in Computer Vision 
• Deep Neural Networks for data reconstruction 
• Wrap-up

“Fake” celebrity images 
generated by DNN in 

1024 x 1024 resolution



21 Taken from slides by Fei-Fei’s TED talk

A cat  
= collection of  
certain shapes

algorithm

Classic Problem: Image Categorization



22 Taken from slides by Fei-Fei’s TED talk

Partial cat 
(escaping fiducial volume)

… how about these?

Outliers 
(axions/dark matter)

Stretching cat 
(DIS?)

Classic Problem: Image Categorization



The Year of Breakthrough: 2012
The field of computer vision celebrated 

Birth of “Deep Learning” 
AlexNet: 8-layers deep neural network

Jaguar

Leopard

For my reference

> 20,000 
citations!
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We celebrated 
discovery of non-zero θ13, 

discovery of Higgs, etc.

The Year of Breakthrough: 2012



Physicists discovered 
a gravitational wave 

(GW150914)

The Year of Breakthrough: 2015



They celebrated 
Super-human performance 
on image categorization task 
by deep neural network

The Year of Breakthrough: 2015

> 7,000 
citations



They celebrated 
a demonstration of generalizability to 
problems beyond image classification

The Year of Breakthrough: 2015



The Year of Breakthrough: 2015

They celebrated 
a demonstration of generalizability to 
problems beyond image classification



The Year of Breakthrough: 2015

Pixel-level donuts detection



Deep Neural Network 
Applications
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NCπ0
CCQE

CC1π
DIS..!

Outline 
• Liquid Argon Time Projection Chambers 
• Recent innovations in Computer Vision 
• Deep Neural Networks for data reconstruction 
• Wrap-up



Image Classification for Physics Analysis
NOvA Neutrino 
Event Topology NEXT 

Signal vs. Background

MicroBooNE 
Signal/Background

MicroBooNE Particle ID

e γ µ π

(~2016)



Image Classification for Physics Analysis

Yellow: “correct” 
bounding box 
Red: by the network

Network Output 
≃ 2.6m (width) x 1 m (height) MicroBooNE 

Simulation + Data Overlay

νµ

arxiv:1611.05531

Beyond: Object Detection
• Key insight: “localize” a 
“distinct feature” in data 

• First step toward utilizing DNN 
for LArTPC data reconstruction 

(~2016)

https://arxiv.org/abs/1604.01444
https://arxiv.org/abs/1611.05531
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Deep Neural Network for Reconstruction
(2016 ~2017)

Extreme localization at the pixel level 
• U-ResNet can identify the pixel-level features  

-  Any categorization at the pixel level (reusable algorithm) 
-  Made one of the first fully automated νe search possible 

Example: pixel-level categorization by U-ResNet 
(identify EM particles at full resolution)



Extreme localization at the pixel level 
• U-ResNet can identify the pixel-level features  

-  Any categorization at the pixel level (reusable algorithm) 
-  Made one of the first fully automated νe search possible 
-  Can analyze to find where “unexpected response” comes from 

Example: pixel-level categorization by U-ResNet 
(identify EM particles at full resolution)34

Deep Neural Network for Reconstruction

Network OutputReal Data Image

Presented  @ IPA 2017 
May 9th 2017

(2016 ~2017)
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Deep Neural Network for Reconstruction

p

p

µ e
p

p

µ e

(2017~)

Extreme localization at the pixel level 
• U-ResNet can identify the pixel-level features  

-  Any categorization at the pixel level (reusable algorithm) 
-  Made one of the first fully automated νe search possible 
-  Can analyze to find where “unexpected response” comes from 
-  Generalizable to both 2D and 3D data

Demonstrated  

@ DUNE-DL Workshop 

Nov. 13th 2017

https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/
https://indico.fnal.gov/event/15722/


Deep Neural Network for Reconstruction

Example: particle edge points prediction by PPN 
(In particular, piggy-backing on U-ResNet)

PPN1 proposes 
Region-of-interest

PPN2 regress 
particle edge points

Feature space point finding via regression 
• PPN: two piggy-backing subnetworks 

-  Proposes “particle trajectory start & end” in 2D/3D  
-  Can be attached to an image classification network or U-ResNet 
-  Can run in real time (≃ 60 FPS for 756 x 756 pixels)

Shown 
@ DeepLearnPhysics

(2018~)



Deep Neural Network for Reconstruction

Example: particle edge points prediction by PPN 
(In particular, piggy-backing on U-ResNet)

PPN2 regress 
particle edge points

Feature space point finding via regression 
• PPN: two piggy-backing subnetworks 

-  Proposes “particle trajectory start & end” in 2D/3D  
-  Can be attached to an image classification network or U-ResNet 
-  Can run in real time (≃ 60 FPS for 756 x 756 pixels)

Shown 
@ DeepLearnPhysics

(2018~)

Pixel distance between 
the proposal and 

closest truth point



Input Now here Next step!

Deep Neural Network for Reconstruction
Where we are heading toward 
• Full reconstruction chain 

-  Individual particle clustering & trajectory reconstruction 
-  Interaction topology + particle hierarchy reconstruction 
-  Energy reconstruction 

• Modular design: plug & play to choose DNN vs. human-
engineered algorithms, keep capability of full chain optimization



DeepLearnPhysics
• Group of physicists mainly from 
neutrino TPC experiments 
-  http://deeplearnphysics.org 
-  MicroBooNE/SBND/ICARUS/DUNE/

NEXT/nEXO/non-HEP … 
• Share software tools + open data 
• Meetings/Blog posts to share 
experience, discuss problems, etc.

γ

e-µ-

3D Data Set2D Data Set
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http://deeplearnphysics.org
http://deeplearnphysics.org/authors.html
http://deeplearnphysics.org
https://github.com/DeepLearnPhysics
http://deeplearnphysics.org/DataChallenge
http://deeplearnphysics.org/Blog


Open-Source Software Development @ DLP 
• Image/Volumetric data processing framework 

-  Experiment agnostic design, Qt/OpenGL based visualization 
toolkit, C++/CUDA based software with extensive Python APIs 

-  Interface to DL frameworks (MXNet, Pytorch, Tensorflow), 
Singularity container distribution for cloud deployment
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DeepLearnPhysics

Hands-on workshop 
@ SLAC/Stanford 

@ March 2018
Workshops to share 
& raise expertise 
• “GPU for everyone”: using free 

K80 GPU from Google cloud 
• Where we synergy across fields 

• Collaboration with Stanford 
campus CS/ML, Cryo-EM, 
accelerator, photon-science, 
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Smiling 
Women

Neutral 
Women

Neutral 
Man

Smiling 
Man

vector arithmetic 
of visual concept 
arXiv:1511.06434

find 
nu’s!

… more exciting projects …

https://arxiv.org/pdf/1511.06434.pdf


SBND Cosmic Rejection w/ U-ResNet

Collection plane view,  
similar performance  
on induction planes 

(from C. Adams)



Our Input
Each “pixel” is the integrated ADC response in that time/
space slice. These maps are chosen to be 500 wires long 
and 1.2ms wide (split into 500 time chunks). 

Alexander Radovic Deep Learning at DUNE 6Alexander Radovic Deep Learning at DUNESlide 1/3 from A. Radovic

DL @ DUNE FD 
Analysis



NuMu Selected Events, 
Reconstructed Energy Spectra

NuMu Appeared 
NuE Beam NuE NC NuTau

Efficiency 80.6

Rejection 99.0 98.7 97.6 81.5

NuMu Appeared 
NuE Beam NuE NC NuTau

Efficiency 87.7

Rejection 99.6 99.3 98.3 81.4

Neutrino Beam Anti-Neutrino Beam
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Alexander Radovic Deep Learning at DUNE 13

Work in progress Work in progress

Slide 2/3 from A. Radovic

DL @ DUNE FD 
Analysis



NuE Selected Events, Reconstructed 
Energy Spectra

Appeared 
NuE NuMu Beam NuE NC NuTau

Efficiency 67.5

Rejection 99.8 52.1 98.6 85.8

Appeared 
NuE NuMu Beam NuE NC NuTau

Efficiency 79.3

Rejection 99.9 48.2 98.8 87.6
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Alexander Radovic Deep Learning at DUNE 15

Work in progress Work in progress

Neutrino Beam Anti-Neutrino Beam

Slide 3/3 from A. Radovic

DL @ DUNE FD 
Analysis



n-nbar Search in DUNE FD



n-nbar Search in DUNE FD



n-nbar Search in DUNE FD

FPGA Implementation 

R&D for online trigger



Distributed CNN Training at PNNL 
E. Church, J. Daily, C. Siegel, M. Schram, J. Strube, K. Wierman

March 30, 2018 49

Full event image: 3600 wires x 3600 time bins x 3 planes x 4 Bytes 
MicroBooNE simulated single particle events 
~150 MB / event 

Even a moderately small network only leaves room for a mini-batch size of 
1-2 events on a modern GPU, for full event fidelity 

This is smaller than required given the latent space of the CNN → slow 
development. Distributed scaling of compute resources will help significantly. 
Scaling allows increase in network depth too (if required) 

For deep learning, one wants large training samples. 
Training may become quickly I/O bound and hence prohibitively slow 
Even a dedicated ”large-mem” node cannot fit more than a few thousand samples 
into memory, at best. 

➞ We are studying PNNL’s MaTEx for distributed training 
 Easier to ”drop in” than say the uber solution, and locally supported! 
➞ And using in-memory loss-less image compression

Slide 1/2 from E. Church
DL Software @PNNL 

Framework Development



Current status (preliminary)

March 29, 2018 50

Training time: mini-batch size = 2, 10000 steps per GPU … 10 epochs 
Identical networks, loss functions, optimizers and input data 
➞ MaTEx does not currently introduce noticeable overhead at this scale 

For the same wall time, training improves with number of GPUs 
➞ Studies ongoing, significant updates planned for CHEP2018 

Slide 2/2 from E. Church
DL Software @PNNL 

Framework Development



More Exciting Stuffs … come chat w/ me :)
3D voxel labeling of Cryo-EM image 

(below: mitochondrion detection)

Detection + Clustering (Mask R-CNN) 
of ATLAS jet images  

(w/ SLAC ATLAS group)

Multi-network Training 
Techniques R&D

Pixel-Flow network for 3D track reco  
(via cross-plane pixel correlation)



… wrapping up …

52

Outline 
1. Introduction 
2. Neutrino oscillation experiments 
3. MicroBooNE: first large-scale LArTPC in U.S. 
4. DeepLearning for LArTPC image analysis 
5. Summary



Wrap Up

• Very active DNN techniques R&D for LArTPC 
- MicroBooNE/SBND/ICARUS/DUNE (ND+FD)

• Cross-disciplinary effort including non-HEP 
-  Energy frontier (LHC), cosmic frontier (LSST/EXO/
NEXT), photon science (LCLS), Cryo-EM, QIS… 

-  DeepLearnPhysics group for sharing tools/expertise 

• DNN for data reconstruction 
-  Modular algorithms for a full reconstruction chain 
-  In-depth computer-vision application development 
using deep neural networks



Back-Up 
Slides
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NN & CNN 
Basics 

~ How Does It Work? ~

55



⟶

x0 
 

Background: Neural Net

The basic unit of a neural net 
is the perceptron (loosely 
based on a real neuron) 

Takes in a vector of inputs (x). 
Commonly inputs are summed 
with weights (w) and offset (b) 

then run through activation.

56

x

⋮

[ 

[ 

x1 
 

xn 
 

∑

w0

w1

wn

⋮
+ b

Input Neuron 
Sum

Activation 
Output

σ( x )➞

How a Simple Perceptron Works



57

By picking a value for w and b,  
we define a boundary  

between the two sets of data

Perceptron 2D Classification

from wikipedia

[ x0 
 

x1 
 

∑0

Output

[ 

cat 
dog

Imagine using two features to separate cats and dogs

∑0

0

How a Simple Perceptron Works

https://en.wikipedia.org/wiki/Perceptron
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Maybe we need to do better: assume a new data point  
(small but not as well behaved) 

Perceptron 2D Classification

from wikipedia

∑0

0

[ x0 
 

x1 
 

∑0

Output

[ 

cat 
dog

How a Simple Perceptron Works

https://en.wikipedia.org/wiki/Perceptron
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We can add another perceptron 
to help (but does not yet solve 

the problem)

Perceptron 2D Classification

x0 
 

x1 
 

from wikipedia

∑0

∑1

∑0

∑1

0

Maybe we need to do better: assume a new data point  
(small but not as well behaved) 

How a Simple Perceptron Works

https://en.wikipedia.org/wiki/Perceptron


[ 
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Perceptron 2D Classification

x0 
 

x1 
 

Output

[ 

cat 
dog∑1

∑0

∑1

∑2

∑2

Another layer can classify based on  
preceding feature layer output

Maybe we need to do better: assume a new data point  
(small but not as well behaved) 

∑0

How a Simple Perceptron Works



Fully-Connected, Feed-forward, 
 Multi-Layer Perceptrons

A traditional neural network consists of a stack of layers of such 
neurons where each neuron is fully connected to other neurons of 
the neighbor layers

61

“Classical” Neural Net



… is not ideal for image classification …

Image classification 
• What is input neurons? 

-  Every pixel value 
•How many weights? 

-  # of pixels in an image! 

•Fully connected? 
-  translation variant!

“Classical” Neural Net



CNN introduce a limitation by forcing the network to 
look at only local, translation invariant features

input feature map
hidden  
layers

~x

input  
layer,   

output  
layer,   ~y

(a) Feed-forward neural network (b) Feed-forward neural network

neuron Activation of a neuron depends 
on the element-wise product of 
3D weight tensor with 3D input 

data and a bias term

63

• Translate over 2D space to process the whole input 
• Neuron learns translation-invariant features 

- Suited for a “homogeneous” detector like LArTPC 
• Output: a “feature-enhanced” image (feature map)

Convolutional Neural Networks



Toy visualization of the CNN operation
64

Convolutional Neural Networks
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Introduction to CNNs
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Introduction to CNNs

1
2
0
-1 0 1
3
1

0
-1 -1
-1
0

-20

-3

1
1
0
-1 -1 -1
1
1

1
1 -1
-1
1

20

0

0
1
0
-1 1 -2
1
-1

0
0 1
-1
1

-20

-3

Filter

Image

Feature Map

Genty DL µB NP

1 0 2 .  .  .

.  .  ..  .  .

weights

Toy visualization of the CNN operation
65

Convolutional Neural Networks
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Introduction to CNNs

Image

Genty

N Filters

D
ep

th

DL µB NP

Feature Maps

many weights!

apply 
many filters

Toy visualization of the CNN operation
66

Convolutional Neural Networks



How Image Classification Networks Work
Goal: extract features to give “single label” to an image 
1. Convolution operation 
2. Down-sampling

Series of convolutions  
+ down-sampling

In
pu

t I
m

ag
e

After 
1st convolution

Discriminants

Down-sampling 
Feature Maps

After 
2nd convolution

After 
3rd convolution

67



Feature map visualization example 
• https://www.youtube.com/watch?v=AgkfIQ4IGaM

Neuron concerning face Neuron loving texts 
(and don’t care about your face)

68

How Image Classification Networks Work

https://www.youtube.com/watch?v=AgkfIQ4IGaM


Series of convolutions  
+ down-sampling

How Image Classification Networks Work
Goal: extract features to give “single label” to an image 
1. Convolution operation 
2. Down-sampling

In
pu

t I
m

ag
e

After 
1st convolution

Discriminants

Down-sampling 
Feature Maps

After 
2nd convolution

After 
3rd convolution
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“Written Texts” 
feature map

“Human Face” 
feature map



How SSNet Works
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In
pu

t I
m

ag
e

O
ut

pu
t I

m
ag

eDown-sampling Up-sampling

feature
tensor

Intermediate, low-resolution 
feature map

Goal: recover precise, pixel-level location of objects 
1. Up-sampling 
-  Expand spatial dimensions of feature maps 

2. Convolution 
-  Smoothing (interpolation) of up-sampled feature maps



DNN for LArTPC Data Reconstruction

U-ResNet

How does 
U-ResNet Work?

Down sampling + Convolutions to identify 
highly abstract features (e.g. “human face”)

Interpolation filters 
(up-sampling) 
+ Convolutions 
(“learnable” filter)




